GBCS Scheme

		 		 r	T	· · ·	 T	,	;	
	1			l			1			
USN	1	-	- 1	į	1	- 1				
CALA			1	i						
		1			1	- 1	1		- 1	

Sixth Semester B.E. Degree Examination, June/July 2018 Aerodynamics - II

Time: 3 hrs. Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Use of Gas tables is permitted.

Module-1

- Derive the total energy equation for steady 1-D flow for a control volume. (08 Marks)
 - Draw a neat sketch showing the variation of pressure along the convergent divergent duct for various back pressures and explain. (08 Marks)

OR

- Briefly explain the significance of speed of sound. Also derive the expression for the same. 2 (08 Marks)
 - b. Air ($C_P = 1.05 \text{ KJ/kg-K}$, $\gamma = 1.38$) at $P_1 = 3 \times 10^5 \text{ N/m}^2$ and $T_1 = 500 \text{ K}$, flows with velocity of 200 m/s in a 30 cm diameter duct. Calculate (i) Mass flow rate. (ii) Mach number (iii) Stagnation temperature. (08.Marks)

Module-2

- a. Derive the expression for static pressure ratio across the shock interms of upstream mach number. (08 Marks)
 - b. The state of gas with (y = 1.3, R = 0.469 KJ/kg-K) upstream of a normal shock wave is given by the following data: M_x 2.5, $P_x = 2$ bar, $T_X = 275$ K. Calculate M, P, T and velocity of the gas downstream of the shock. Check and compare the calculated values with those given in the tables. (08 Marks)

OR.

- Derive the expression for Hugoniot equation of a moving normal shock wave. (10 Marks)
 - If the entropy change caused by a normal shock in an airstream is 200 J/kg.K. Determine 'M' ahead of the shock and the shock strength. (06 Marks)

Module-3

- Derive the Prandtl-Meyer relation for oblique shock wave in perfect gas. (10 Marks) (06 Marks)
 - Briefly explain the flow past wedges with neat sketch.

- a. Briefly explain the reflection and intersection of shocks and expansion waves. (08 Marks)
 - An oblique shock in air causes an entropy increase of 11.5 J/kg-K. If the shock angle is 25°, determine the Mach number ahead of the shock and the flow deflection angle if $M_2 = 2.7$. (08 Marks)

Module-4

- a. Derive the basic potential equation for compressible flow. (10 Marks) (06 Marks)
 - b. Explain the different boundary conditions used for the flow over an airfoil.

OR

8 a. Briefly explain the Von-Karman rule for transonic flow.

(08 Marks

b. A profile has at $M_{_{\infty}}=0.29$, the following lift co-efficients:

$$C_L = 0.2$$
 at $\alpha = 3^\circ$

$$C_{L} = -0.1 \text{ at } \alpha = -2^{\circ}$$

Calculate
$$\frac{dC_L}{d\alpha}$$
 for M = 0.2, 0.4 and 1

(08 Marks)

Module-5

9 a. Briefly explain the characteristic features and operation of supersonic wind tunnels.

(08 Mark)

b. Describe the pressure measurement procedure in Manometers.

(08 Mark

OR

10 a. Briefly explain the flow visualization techniques used in supersonic flow. (08)

(08 Mark :

b. Explain the shock tube device. Also mention its applications.

(08 Mark

* * * * *